Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567911

RESUMEN

The antibiotic heliomycin (resistomycin), which is generated from Streptomyces resistomycificus, has multiple activities, including anticancer effects. Heliomycin was first described in the 1960s, but its clinical applications have been hindered by extremely low solubility. A series of 4-aminomethyl derivatives of heliomycin were synthesized to increase water solubility; studies showed that they had anti-proliferative effects, but the drug targets remained unknown. In this study, we conducted cellular thermal shift assays (CETSA) and molecular docking simulations to identify and validate that heliomycin and its water-soluble derivative, 4-(dimethylaminomethyl)heliomycin (designated compound 4-dmH) engaged and targeted with sirtuin-1 (SIRT1) in p53-functional SAS and p53-mutated HSC-3 oral cancer cells. We further addressed the cellular outcome of SIRT1 inhibition by these compounds and found that, in addition to SIRT1, the water-soluble 4-dmH preferentially targeted a tumor-associated NADH oxidase (tNOX, ENOX2). The direct binding of 4-dmH to tNOX decreased the oxidation of NADH to NAD+ which diminished NAD+-dependent SIRT1 deacetylase activity, ultimately inducing apoptosis and significant cytotoxicity in both cell types, as opposed to the parental heliomycin-induced autophagy. We also observed that tNOX and SIRT1 were both upregulated in tumor tissues of oral cancer patients compared to adjacent normal tissues, suggesting their clinical relevance. Finally, the better therapeutic efficacy of 4-dmH was confirmed in tumor-bearing mice, which showed greater tNOX and SIRT1 downregulation and tumor volume reduction when treated with 4-dmH compared to heliomycin. Taken together, our in vitro and in vivo findings suggest that the multifaceted properties of water-soluble 4-dmH enable it to offer superior antitumor value compared to parental heliomycin, and indicated that it functions through targeting the tNOX-NAD+-SIRT1 axis to induce apoptosis in oral cancer cells.


Asunto(s)
Neoplasias de la Boca , Compuestos Policíclicos , Sirtuina 1 , Humanos , Animales , Ratones , Sirtuina 1/metabolismo , Línea Celular Tumoral , NAD/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Simulación del Acoplamiento Molecular , Apoptosis , Neoplasias de la Boca/tratamiento farmacológico
2.
Am J Cancer Res ; 13(11): 5352-5367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058797

RESUMEN

First-generation tyrosine kinase inhibitors (TKIs) have been associated with good responses in non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR)-sensitizing mutations. However, this therapeutic strategy inevitably promotes resistance to TKIs. This study aimed to investigate the functional role and mechanism of proscillaridin A in NSCLC with or without EGFR mutations. Cellular function assays showed that proscillaridin A could inhibit cell proliferation, migration and invasion in vitro independent of EGFR mutation status. Real-time PCR of the human chromosome 17 α-satellite region revealed that proscillaridin A significantly suppressed tumour micrometastasis in vivo. In immunofluorescence experiments, we found that proscillaridin A decreased filopodia length in NSCLC cells. Furthermore, proscillaridin A also downregulated EGFR-Src-mediated cytoskeleton-related pathways, including FAK-paxillin signalling, which has been shown to promote cell filopodia formation by regulating small G-proteins. Therefore, we used the GST-PBD pull-down assay to demonstrate that proscillaridin A could decrease Cdc42 activity. Moreover, survival analyses of 591 lung adenocarcinoma patients from the GEO database indicated that the expression levels of Src and paxillin and the risk score of the gene signature based on these two factors were negatively correlated with overall survival and could be used as independent prognostic factors. In conclusion, we speculate that proscillaridin A inhibits lung cancer cell growth and motility by regulating EGFR-Src-associated pathways.

3.
J Taibah Univ Med Sci ; 18(4): 787-801, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36618881

RESUMEN

Objective: The coronavirus disease 2019 (COVID-19) health crisis that began at the end of 2019 made researchers around the world quickly race to find effective solutions. Related literature exploded and it was inevitable that an automated approach was needed to find useful information, namely text mining, to overcome COVID-19, especially in terms of drug candidate discovery. While text mining methods for finding drug candidates mostly try to extract bioentity associations from PubMed, very few of them mine with a clustering approach. The purpose of this study was to demonstrate the effectiveness of our approach to identify drugs for the prevention of COVID-19 through literature review, cluster analysis, drug docking calculations, and clinical trial data. Methods: This research was conducted in four main stages. First, the text mining stage was carried out by involving Bidirectional Encoder Representations from Transformers for Biomedical to obtain vector representation of each word in the sentence from texts. The next stage generated the disease-drug associations, which were obtained from the correlation between disease and drug. Next, the clustering stage grouped the rules through the similarity of diseases by utilizing Term Frequency-Inverse Document Frequency as its feature. Finally, the drug candidate extraction stage was processed through leveraging PubChem and DrugBank databases. We further used the drug docking package AUTODOCK VINA in PyRx software to verify the results. Results: Comparative analyses showed that the percentage of findings using mining with clustering outperformed mining without clustering in all experimental settings. In addition, we suggest that the top three drugs/phytochemicals by drug docking analysis may be effective in preventing COVID-19. Conclusions: The proposed method for text mining utilizing the clustering method is quite promising in the discovery of drug candidates for the prevention of COVID-19 through the biomedical literature.

4.
J Proteome Res ; 22(4): 1056-1070, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36349894

RESUMEN

The fundamental pursuit to complete the human proteome atlas and the unmet clinical needs in lung adenocarcinoma have prompted us to study the functional role of uncharacterized proteins and explore their implications in cancer biology. In this study, we characterized SEL1L3, a previously uncharacterized protein encoded from chromosome 4 as a dysregulated protein in lung adenocarcinoma from the large-scale tissue proteogenomics data set established using the cohort of Taiwan Cancer Moonshot. SEL1L3 was expressed in abundance in the tumor parts compared with paired adjacent normal tissues in 90% of the lung adenocarcinoma patients in our cohorts. Moreover, survival analysis revealed the association of SEL1L3 with better clinical outcomes. Intriguingly, silencing of SEL1L3 imposed a reduction in cell viability and activation of ER stress response pathways, indicating a role of SEL1L3 in the regulation of cell stress. Furthermore, the immune profiles of patients with higher SEL1L3 expression were corroborated with its active role in immunophenotype and favorable clinical outcomes in lung adenocarcinoma. Taken together, our study revealed that SEL1L3 might play a vital role in the regulation of cell stress, interaction with cancer cells and the immune microenvironment. Our research findings provide promising insights for further investigation of its molecular signaling network and also suggest SEL1L3 as a potential emerging adjuvant for immunotherapy in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Proteogenómica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/patología , Transducción de Señal , Inmunoterapia , Microambiente Tumoral , Pronóstico , Biomarcadores de Tumor/genética
5.
Cancers (Basel) ; 14(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36230644

RESUMEN

Anthraquinone-based intercalating compounds, namely doxorubicin and mitoxantrone, have been used clinically based on their capacity to bind DNA and induce DNA damage. However, their applications have been limited by side effects and drug resistance. New-generation anthraquinone derivatives fused with different heterocycles have been chemically synthesized and screened for higher anticancer potency. Among the compounds reported in our previous study, 4,11-bis(2-(2-chloroacetamidine)ethylamino)anthra[2,3-b]thiophene-5,10-dione dihydrochloride (designated 2c) was found to be apoptotic, but the direct cellular target responsible for the cytotoxicity remained unknown. Here, we report the synthesis and anticancer properties of two other derivatives, 4,11-bis(2-(2-chloroacetamidine)ethylamino)naphtho[2,3-f]indole-5,10-dione dihydrochloride (2a) and 4,11-bis(2-(2-chloroacetamidine)ethylamino)-2-methylanthra[2,3-b]furan-5,10-dione dihydrochloride (2b). We sought to identify and validate the protein target(s) of these derivatives in oral cancer cells, using molecular docking simulations and cellular thermal shift assays (CETSA). Our CETSA results illustrate that these derivatives targeted the tumor-associated NADH oxidase (tNOX, ENOX2), and their direct binding downregulated tNOX in p53-functional SAS and p53-mutated HSC-3 cells. Interestingly, the compounds targeted and downregulated tNOX to reduce SIRT1 deacetylase activity and increase Ku70 acetylation, which triggers c-Flip ubiquitination and induces apoptosis in oral cancer cells. Together, our data highlight the potential value of these heteroarene-fused anthraquinones in managing cancer by targeting tNOX and augmenting apoptosis.

6.
Front Oncol ; 12: 801300, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982951

RESUMEN

Background: Despite advances in prognosis and treatment of lung adenocarcinoma (LADC), a notable non-small cell lung cancer subtype, patient outcomes are still unsatisfactory. New insight on novel therapeutic strategies for LADC may be gained from a more comprehensive understanding of cancer progression mechanisms. Such strategies could reduce the mortality and morbidity of patients with LADC. In our previous study, we performed cDNA microarray screening and found an inverse relationship between inhibitor of DNA binding 2 (Id2) expression levels and the invasiveness of LADC cells. Materials and Methods: To identify the functional roles of Id2 and its action mechanisms in LADC progression, we successfully established several Id2-overexpressing and Id2-silenced LADC cell clones. Subsequently, we examined in vitro the effects exerted by Id2 on cell morphology, proliferation, colony formation, invasive, and migratory activities and examined in vivo those exerted by Id2 on cell metastasis. The mechanisms underlying the action of Id2 were investigated using RNA-seq and pathway analyses. Furthermore, the correlations of Id2 with its target gene expression and clinical outcomes were calculated. Results: Our data revealed that Id2 overexpression could inhibit LADC cells' migratory, invasive, proliferation, and colony formation capabilities. Silencing Id2 expression in LADC cells reversed the aforementioned inhibitory effects, and knockdown of Id2 increased LADC cells' metastatic abilities in vivo. Bioinformatics analysis revealed that these effects of Id2 on cancer progression might be regulated by focal adhesion kinase (FAK) signaling and CD44/Twist expression. Furthermore, in online clinical database analysis, patients with LADC whose Id2 expression levels were high and FAK/Twist expression levels were low had superior clinical outcomes.Conclusion: Our data indicate that the Id2 gene may act as a metastasis suppressor and provide new insights into LADC progression and therapy.

7.
Am J Cancer Res ; 12(3): 1042-1055, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35411221

RESUMEN

Bladder cancer is one of the most frequent cancers among males, and a poor survival rate reflects problems with aggressiveness and chemo-resistance. Accumulating evidence indicates that SIRT1 is involved in bladder cancer tumorigenesis and is positively associated with chemo-resistance and poor prognosis. We recently synthesized water-soluble chemical derivatives of heliomycin, an antibiotic from Streptomyces resistomycificus, and demonstrated that they possess anticancer properties. In this present study, we used the cellular thermal shift assay (CETSA) in T24 bladder cancer cells to show that heliomycin (designated compound (H1)) and its 4-(tert-butylamino)methyl derivative (HD2) directly engaged with SIRT1 in the native cellular environment, whereas another derivative (HD3) did not. Upon binding, heliomycin downregulated SIRT1 protein expression without altering its transcript level, and subsequently induced autophagy. Interestingly, the derivative (HD2) triggered apoptosis. The interaction between SIRT1 protein and heliomycin or its derivatives was also speculated by a molecular docking simulation, suggesting heliomycin (H1) and derivative (HD2) acting with the different binding modes to SIRT1. Given the increased water-solubility, hydrogen bonds were found on Ala262 and Ile347 residues in the docked complex of derivative (HD2) to produce more steady interaction and initiate signaling pathways that were not observed in the case of heliomycin. Meanwhile, it is evident that derivative (HD3) did not engage with SIRT1 by CETSA or molecular docking studies, nor did it downregulate SIRT1 expression. Taken together, these findings clearly show that SIRT1 is targeted and downregulated by heliomycin and its water-soluble 4-aminomethylated derivative (HD2) possibly through autophagic and/or proteasomal degradation, leading to cell death and growth suppression of T24 bladder cancer cells.

8.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408854

RESUMEN

Dysregulated epidermal growth factor receptor (EGFR) expression is frequently observed in non-small cell lung cancer (NSCLC) growth and metastasis. Despite recent successes in the development of tyrosine kinase inhibitors (TKIs), inevitable resistance to TKIs has led to urgent calls for novel EGFR inhibitors. Herein, we report a rational workflow used to identify novel EGFR-TKIs by combining hybrid ligand- and structure-based pharmacophore models. Three types of models were developed in this workflow, including 3D QSAR-, common feature-, and structure-based EGFR-TK domain-containing pharmacophores. A National Cancer Institute (NCI) compound dataset was adopted for multiple-stage pharmacophore-based virtual screening (PBVS) of various pharmacophore models. The six top-scoring compounds were identified through the PBVS pipeline coupled with molecular docking. Among these compounds, NSC609077 exerted a significant inhibitory effect on EGFR activity in gefitinib-resistant H1975 cells, as determined by an enzyme-linked immunosorbent assay (ELISA). Further investigations showed that NSC609077 inhibited the anchorage-dependent growth and migration of lung cancer cells. Furthermore, NSC609077 exerted a suppressive effect on the EGFR/PI3K/AKT pathway in H1975 cells. In conclusion, these findings suggest that hybrid virtual screening may accelerate the development of targeted drugs for lung cancer treatment.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Fosfatidilinositol 3-Quinasas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
9.
Sci Rep ; 12(1): 1975, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132122

RESUMEN

Aphelenchoides besseyi could cause great yield losses of rice and many economically important crops. Acetylcholinesterase (AChE) inhibitors were commonly used to manage plant-parasitic nematodes. However, nematodes resistant to AChE inhibitors have been increasingly reported due to the extensive use of these chemicals. The current study was aimed to establish the correlation between fenamiphos (an AChE-inhibitor) sensitivities and acetylcholinesterase genes (ace) by analyzing two isolates of A. besseyi (designated Rl and HSF), which displayed differential sensitivities to fenamiphos. The concentrations of fenamiphos that led to the death of 50% (LD50) of Rl and HSF were 572.2 ppm and 129.4 ppm, respectively. Three ace genes were cloned from A. besseyi and sequenced. Sequence searching and phylogenic analyses revealed that AChEs of R1 and HSF shared strong similarities with those of various vertebrate and invertebrate species. Molecular docking analysis indicated that AChEs-HSF had much higher affinities to fenamiphos than AChEs-R1. Quantitative reverse transcriptase-PCR analyses revealed that expression of three ace genes were downregulated in HSF but were upregulated in Rl after exposure to 100 ppm fenamiphos for 12 h. The results indicated that the expression of the ace genes was modulated in response to fenamiphos in different nematode strains. An increased expression of the ace genes might contribute to fenamiphos-insensitivity as seen in the Rl isolate.


Asunto(s)
Acetilcolinesterasa/genética , Inhibidores de la Colinesterasa/farmacología , Expresión Génica , Nematodos/efectos de los fármacos , Nematodos/genética , Compuestos Organofosforados/farmacología , Acetilcolinesterasa/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Dosificación Letal Mediana , Simulación del Acoplamiento Molecular , Regulación hacia Arriba/efectos de los fármacos
10.
Am J Cancer Res ; 11(10): 4900-4918, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765299

RESUMEN

Paired-like homeodomain transcription factor 2 (PITX2) is well known to play an essential role in normal embryonic development. Emerging evidence suggests that PITX2 may be involved in human tumorigenesis, but the role of PITX2 in tumour progression remains largely unclear. The expression levels of PITX2 in lung cancer cells were determined by qRT-PCR and Western blot analyses. Gain- and loss-of-function experiments were conducted to investigate the biological roles of PITX2 in the phenotype of lung cancer cells. Immunofluorescence staining and transmission electron microscopy were used to observe autophagy. The expression level and clinical significance of PITX2 were determined in a Taiwanese cohort and the Gene Expression Omnibus (GEO) database, respectively. Here, we show that PITX2B is the most abundant isoform of the bicoid homeodomain family in lung cancer cells. The enforced expression of PITX2B promoted lung cancer tumorigenesis and progression in vitro and in vivo. The mechanistic analysis revealed that the nuclear localization of PITX2B is correlated with its oncogenic functions and two important nuclear localization signals. In addition, PITX2B knockdown in lung cancer cells caused a marked increase in autophagy and apoptosis, suggesting that PITX2B plays an important role in lung cancer cell survival. Moreover, a high expression of PITX2B was associated with a poor overall survival (P<0.05) in both Taiwanese non-small-cell lung cancer patients and GEO lung cancer cohorts. These results provide new insight into the contribution of PITX2B to lung cancer progression, implicate PITX2B as an important component of cell survival signals and further establish PITX2B as a therapeutic target for lung cancer treatment.

11.
Appl Microbiol Biotechnol ; 105(8): 3235-3248, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33770244

RESUMEN

Many cases of avian influenza A(H7N9) virus infection in humans have been reported since its first emergence in 2013. The disease is of concern because most patients have become severely ill with roughly 30% mortality rate. Because the threat in public health caused by H7N9 virus remains high, advance preparedness is essentially needed. In this study, the recombinant H7N9 hemagglutinin (HA) was expressed in insect cells and purified for generation of two monoclonal antibodies, named F3-2 and 1C6B. F3-2 can only recognize the H7N9 HA without having cross-reactivity with HA proteins of H1N1, H3N2, H5N1, and H7N7. 1C6B has the similar specificity with F3-2, but 1C6B can also bind to H7N7 HA. The binding epitope of F3-2 is mainly located in the region of H7N9 HA(299-307). The binding epitope of 1C6B is located in the region of H7N9 HA(489-506). F3-2 and 1C6B could not effectively inhibit the hemagglutination activity of H7N9 HA. However, F3-2 can prevent H7N9 HA from trypsin cleavage and can bind to H7N9 HA which has undergone pH-induced conformational change. F3-2 also has the ability of binding to H7N9 viral particles and inhibiting H7N9 virus infection to MDCK cells with the IC50 value of 22.18 µg/mL. In addition, F3-2 and 1C6B were utilized for comprising a lateral flow immunochromatographic test strip for specific detection of H7N9 HA. KEY POINTS: • Two mouse monoclonal antibodies, F3-2 and 1C6B, were generated for recognizing the novel binding epitopes in H7N9 HA. • F3-2 can prevent H7N9 HA from trypsin cleavage and inhibit H7N9 virus infection to MDCK cells. • F3-2 and 1C6B were developed as a lateral flow immunochromatographic test for specific detection of H7N9 HA.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Humana , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas , Humanos , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N7 del Virus de la Influenza A , Gripe Humana/prevención & control , Ratones
12.
Am J Cancer Res ; 10(6): 1668-1690, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32642283

RESUMEN

Aberrant elevated Src activity is related to lung cancer growth and metastasis. Therefore, the development of potent small molecule inhibitors to target Src kinase is a potential therapeutic strategy for lung cancer. This study aimed to develop a computational model for the in silico screening of Src inhibitors and then assess the suppressive effect of candidate compounds on cellular functions. A 3D-quantitative structure-activity relationship (QSAR) pharmacophore model consisting of two hydrogen bond acceptors and two hydrophobic regions was constructed by using 28 structurally diverse compounds with IC50 values spanning four orders of magnitude. A National Cancer Institute (NCI) compound dataset was employed for virtual screening by applying the pharmacophore model and molecular docking. Candidate compounds were chosen from the top 20% of scored hits. Among these compounds, the suppressive effects of 30 compounds available in the NCI on Src phosphorylation were validated by using an enzyme-linked immunosorbent assay. Among these compounds, SJG-136, a pyrrolobenzodiazepine dimer, showed a significant inhibitory effect against Src activity in a dose-dependent manner. Further investigations showed that SJG-136 can inhibit lung cancer cell proliferation, clonogenicity, invasion and migration in vitro and tumour growth in vivo. Furthermore, SJG-136 also had an inhibitory effect on Src-related signaling pathways, including the FAK, paxillin, p130Cas, PI3K, AKT, and MEK pathways. In conclusion, we have established a pharmacophore-based virtual screening approach to identify novel Src inhibitors that can inhibit lung cancer cell growth and motility through suppressing Src-related pathways. These findings may contribute to the development of targeted drugs for lung cancer treatment, such as lead compounds.

13.
Eur J Med Chem ; 181: 111584, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31419740

RESUMEN

Developing new therapeutic strategies to overcome drug resistance of cancer cells is an ongoing endeavor. From among 2 million chemicals, we identified ethyl 4-oxo-2-phenyl-1,4-dihydroquinoline-6-carboxylate (AS1712) as a low-toxicity inhibitor of lung cancer cell proliferation and xenograft tumor growth. We show that AS1712 is active against broad cancer cell lines and is able to bind in the colchicine-binding pocket of ß-tubulin, thereby inhibiting microtubule assembly and, consequently, inducing mitotic arrest and apoptosis. Our cell-based structure-activity relationship study identified a new lead compound, RJ-LC-15-8, which had a greater anti-proliferative potency for H1975 cells than did AS1712, while maintaining a similar mechanism of action. Notably, AS1712 and RJ-LC-15-8 overcame P-glycoprotein efflux pump and ß-tubulin alterations that lead to acquired resistance against microtubule-targeting drugs of cancer cells. AS1712 and RJ-LC-15-8 may be lead compounds that overcome acquired resistance to microtubule-targeting agents of cancer cells.


Asunto(s)
Quinolonas/química , Quinolonas/farmacología , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colchicina/metabolismo , Resistencia a Antineoplásicos , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Tubulina (Proteína)/química
14.
J Exp Clin Cancer Res ; 36(1): 27, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28173828

RESUMEN

BACKGROUND: Angiogenesis is a hallmark of cancer and plays a critical role in lung cancer progression, which involves interactions between cancer cells, endothelial cells and the surrounding microenvironment. However, the gene expression profiles and the changes in the biological phenotype of vascular endothelial cells after interactions with lung cancer cells remain unclear. METHODS: An indirect transwell co-culture system was used to survey the interaction between human umbilical vein endothelial cells (HUVECs) and human lung adenocarcinoma CL1-5 cells, as well as to investigate the morphological and molecular changes of HUVECs. The differentially expressed genes (DEGs) in HUVECs after co-culture with cancer cells were identified by microarray. Moreover, a publicly available microarray dataset of 293 non-small-cell lung cancer (NSCLC) patients was employed to evaluate the prognostic power of the gene signatures derived from HUVECs. RESULTS: The interaction between HUVECs and lung cancer cells changes the morphology of HUVECs, causing them to have a mesenchymal-like morphology and alter their cytoskeleton organization. Furthermore, after co-culture with lung cancer cells, HUVECs showed increased cell motility and microvessel tube formation ability and a decreased apoptotic percentage. Transcriptomic profiling of HUVECs revealed that many survival-, apoptosis- and angiogenesis-related genes were differentially expressed after interactions with lung cancer cells. Further investigations showed that the PI3K/Akt signalling pathway and COX-2 are involved in endothelial tube formation under the stimulation of lung cancer cells. Moreover, Rac-1 activation might promote endothelial cell motility through the increased formation of lamellipodia and filopodia. The inhibitors of PI3K and COX-2 could reverse the increased tube formation and induce the apoptosis of HUVECs. In addition, the gene signatures derived from the DEGs in HUVECs could predict overall survival and disease-free survival in NSCLC patients and serve as an independent prognostic factor. CONCLUSIONS: In this study, we found that cancer cells can promote endothelial cell tube formation and survival, at least in part, through the PI3K/Akt signalling pathway and thus change the microenvironment to benefit tumour growth. The gene signatures from HUVECs are associated with the clinical outcome of NSCLC patients.


Asunto(s)
Adenocarcinoma/genética , Células Endoteliales/patología , Neoplasias Pulmonares/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Adenocarcinoma del Pulmón , Línea Celular Tumoral , Técnicas de Cocultivo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Transducción de Señal , Microambiente Tumoral
15.
Comput Biol Chem ; 44: 15-21, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23499870

RESUMEN

BACKGROUND: Recent studies have indicated that microRNA (miRNA) may play an oncogenic or tumor suppressor role in human cancer. To study the regulatory role of miRNAs in tumorigenesis, an integrated platform has been set up to provide a user friendly interface for query. The main advantage of the present platform is that all the miRNA target genes' information and disease records are drawn from experimentally verified or high confidence records. RESULTS: MiRNA target gene results are annotated with reference to the disease gene as well as the pathway database. The correlation strength between miRNA and target gene expression profile is quantified by computing the correlation coefficient using the NCI-60 expression profiling data. Comprehensive analysis of the NCI-60 data found that the cumulative percentage of negative correlation coefficients for cleavage regulation is slightly higher than its positive counterpart; which indicated that the mRNA degradation mechanism is slightly dominant. In addition, the RNAHybrid and TargetScans scores are computed which potentially served as quantitative estimators for miRNA-mRNA binding events. Three scores are defined for each miRNA-mRNA pair, which are based on the disease gene and pathway information. These three scores allow user to sort out high confidence cancer-related miRNA-mRNA pairs. Statistical tests were applied to investigate the relations of three chromosomal features, i.e., CpG island, fragile site, and miRNA cluster, with cancer-related miRNAs. A web-based interface has been set up for query, which can be accessed at: http://ppi.bioinfo.asia.edu.tw/mirna_target/ CONCLUSIONS: The main advantage of the present platform on miRNA-mRNA targeting information is that all the target genes' information and disease records are experimentally verified. Although this may limit the number of miRNA-mRNA relationships, the results provided here are more solid and have fewer false positive events. Certain novel cancer-related miRNA-mRNA pairs are identified and confirmed in the literature. Fisher's exact test suggests that CpG island and fragile site associated miRNAs tend to associate with cancer formation. In summary, the present platform provides an easy means of investigating cancer-related miRNAs.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , MicroARNs/genética , Neoplasias/genética , ARN Mensajero/genética , Línea Celular Tumoral , Humanos , National Cancer Institute (U.S.) , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...